metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Octamethylbis(μ_2 -2-methylbenzoato- $\kappa^2 O:O'$)bis(2-methylbenzoato- κO)di- μ_3 oxido-tetratin(IV)

Muhammad Danish,^a Sabiha Ghafoor,^a M. Nawaz Tahir,^b* Nazir Ahmad^a and Masood Hamid^a

^aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 30 August 2010; accepted 13 September 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.018; wR factor = 0.049; data-to-parameter ratio = 21.9.

The title compound, $[Sn_4(CH_3)_8(C_8H_7O_2)_4O_2]$, is a distannoxane derivative of 2-methylbenzoic acid. The crystal structure is composed of centrosymmetric dimers lying about inversion centres. Both independent Sn atoms adopt distorted trigonal-bipyramidal SnC₂O₃ coordination geometries with the basal planes consisting of two C-atoms from the methyl groups and a bridging O atom. The Sn-C and Sn-O bond lengths lie in the ranges 2.090 (2)-2.104 (3) and 2.0241 (14)-2.2561 (15) Å, respectively. The central four-membered planar Sn_2O_2 ring [Sn···Sn distance = 3.2993 (2) Å] makes dihedral angles of 5.43 (11) and 59.50 (7) $^{\circ}$ with the methylphenyl groups, which are themselves oriented at a dihedral angle of 61.38 (8)°. Besides weak C-H···O and C-H··· π interactions, the packing mainly features van der Waals forces between the molecules.

Related literature

For distannoxanes, see: Amini et al. (2002); Danish et al. (2009).

 $\gamma = 71.876 \ (1)^{\circ}$

Z = 1

V = 1116.24 (4) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.26 \times 0.23 \text{ mm}$

18376 measured reflections

5470 independent reflections

4786 reflections with $I > 2\sigma(I)$

 $\mu = 2.26 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.024$

Experimental

Crystal data

[Sn₄(CH₃)₈(C₈H₇O₂)₄O₂] $M_r = 1167.66$ Triclinic, $P\overline{1}$ a = 10.0413 (2) Å b = 10.1280 (2) Å c = 12.0910 (3) Å $\alpha = 83.300(1)^{\circ}$ $\beta = 72.850(2)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.514, \ T_{\max} = 0.593$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.018$	250 parameters
$wR(F^2) = 0.049$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
5470 reflections	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C14–C19 phenyl ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$ \begin{array}{c} \hline C10-H10C\cdots O5^{i} \\ C4-H4\cdots Cg^{i} \end{array} $	0.96	2.678	3.452 (3)	138
	0.93	2.74	3.493 (3)	139

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2399).

References

Amini, M. M., Abadi, S. H., Mirzaee, M., Lügger, T., Hahn, F. E. & Ng, S. W. (2002). Acta Cryst. E58, m697–m699. Bruker (2005). *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2009). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

Danish, M., Tahir, M. N., Ahmad, N., Raza, A. R. & Ibrahim, M. (2009). Acta Cryst. E65, m609–m610.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2010). E66, m1268-m1269 [doi:10.1107/S1600536810036512]

Octamethylbis(μ_2 -2-methylbenzoato- $\kappa^2 O:O'$)bis(2-methylbenzoato- κO)di- μ_3 -oxido-tetratin(IV)

M. Danish, S. Ghafoor, M. N. Tahir, N. Ahmad and M. Hamid

Comment

Recently we have reported the synthesis and crystal structure of a distannoxane (Danish *et al.*, 2009). In continuation of our interest in tin chemistry, the title compound (I), (Fig. 1) has been synthesized and structurally characterized. The crystal structure of bis(1,1,3,3-tetramethyl-1,3-dibenzoatodistannoxane) (Amini *et al.*, 2002) has also been published which is related to the title compound.

In the title molecule, both independent Sn atoms adopt distorted trigonal-bipyramidal coordination spheres with basal planes A (C9/C10/O3) and B (C11/C12/O3). The Sn—C and Sn—O bond lengths are lying in a range of 2.090 (2)–2.104 (3) Å and 2.0241 (14)–2.2561 (15) Å, respectively. The symmetry-related central four membered ring C (Sn2/O3/Sn2ⁱ/O3ⁱ; symmetry code: i = -x + 1, -y, -z + 1) is planar. The dihedral angles between A/C, B/C and A/B are 72.76 (4), 85.40 (6) and 57.54 (8)°, respectively. In (I), the 2-methylbenzoato ligands are not planar. In the *endo* ligand, group D (C2—C8) [r.m.s deviation of 0.0082 Å] is oriented at a dihedral angle of 32.9 (2)° with the carboxylato group E (O1/C1/O2). Whereas the *exo* ligand, group F (C14—C20) [r.m.s deviation of 0.0115 Å] is oriented at a dihedral angle of 45.3 (2)° with the carboxylato group G (O4/C13/O5). The dihedral angles between C/D and C/F are 5.43 (11) and 59.50 (7)°, respectively. There exist a weak C—H…O and a C—H… π interaction (Table 1). The packing mainly features van der Waals interactions between the molecules.

Experimental

The sodium salt of *o*-toluic acid (0.316 g, 2.0 mmol) was suspended in 25 ml dry methanol in a 100 ml round-bottom flask. To this suspension, dimethyl tin dichloride (0.22 g, 1 mmol), dissolved in 25 ml dry methanol, was added dropwise with constant stirring at room temperature. The reaction mixture was refluxed for 6 h. Filtration was carried out to remove sodium chloride formed during reaction. Colorless prism of (I) were obtained after 48 h from the filtrate. M.p 486 K; yield: 71%.

Refinement

Some low angle reflections were omitted from the refinement due to the beam stop effect. The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Figures

Fig. 1. View of the molecular structure of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radius. [Symmetry code: (i) -x + 1, -y, -z + 1.]

$Octamethylbis(\mu_2-2-methylbenzoato-\kappa^2 O; O') bis(2-methylbenzoato-\kappa O) di-\mu_3-oxido-tetratin(IV)$

Crystal data	
[Sn ₄ (CH ₃) ₈ (C ₈ H ₇ O ₂) ₄ O ₂]	Z = 1
$M_r = 1167.66$	F(000) = 572
Triclinic, <i>P</i> T	$D_{\rm x} = 1.737 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 10.0413 (2) Å	Cell parameters from 4786 reflections
b = 10.1280 (2) Å	$\theta = 2.1 - 28.3^{\circ}$
c = 12.0910 (3) Å	$\mu = 2.26 \text{ mm}^{-1}$
$\alpha = 83.300 \ (1)^{\circ}$	T = 296 K
$\beta = 72.850 \ (2)^{\circ}$	Prism, colorless
$\gamma = 71.876 \ (1)^{\circ}$	$0.30\times0.26\times0.23~mm$
V = 1116.24 (4) Å ³	

Data collection

Bruker APEXII CCD diffractometer	5470 independent reflections
Radiation source: fine-focus sealed tube	4786 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.024$
Detector resolution: 7.50 pixels mm ⁻¹	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
ω scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$k = -13 \rightarrow 13$
$T_{\min} = 0.514, \ T_{\max} = 0.593$	$l = -16 \rightarrow 16$
18376 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.018$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.049$	H-atom parameters constrained

<i>S</i> = 1.09	$w = 1/[\sigma^2(F_o^2) + (0.0194P)^2 + 0.3314P]$ where $P = (F_o^2 + 2F_c^2)/3$
5470 reflections	$(\Delta/\sigma)_{\text{max}} = 0.002$
250 parameters	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Sn1	0.22041 (1)	0.28397 (1)	0.53408 (1)	0.0339 (1)
Sn2	0.57013 (1)	0.05882 (1)	0.58448 (1)	0.0328 (1)
01	0.26212 (16)	0.33067 (15)	0.69668 (12)	0.0441 (5)
02	0.50311 (16)	0.27701 (15)	0.64565 (14)	0.0488 (5)
03	0.39865 (14)	0.11621 (13)	0.51399 (12)	0.0374 (4)
O4	0.20722 (17)	0.18882 (15)	0.38766 (13)	0.0474 (5)
O5	0.0386 (2)	0.38219 (17)	0.36273 (15)	0.0601 (6)
C1	0.3791 (2)	0.3503 (2)	0.69953 (17)	0.0364 (6)
C2	0.3696 (2)	0.46856 (19)	0.76660 (16)	0.0341 (6)
C3	0.2507 (2)	0.5860 (2)	0.77069 (19)	0.0432 (7)
C4	0.2381 (3)	0.7032 (2)	0.8260 (2)	0.0497 (7)
C5	0.3430 (3)	0.7029 (2)	0.8776 (2)	0.0495 (7)
C6	0.4602 (3)	0.5859 (2)	0.87427 (19)	0.0462 (7)
C7	0.4771 (2)	0.4666 (2)	0.81952 (17)	0.0376 (6)
C8	0.6062 (3)	0.3421 (2)	0.8215 (2)	0.0528 (8)
C9	0.0303 (2)	0.2487 (3)	0.6466 (2)	0.0514 (8)
C10	0.2897 (3)	0.4523 (2)	0.4481 (2)	0.0565 (8)
C11	0.7553 (3)	0.1127 (2)	0.4805 (2)	0.0510 (8)
C12	0.4894 (3)	-0.0106 (3)	0.7538 (2)	0.0572 (8)
C13	0.1215 (2)	0.2684 (2)	0.32976 (18)	0.0423 (7)
C14	0.1306 (2)	0.2099 (2)	0.21784 (18)	0.0415 (6)
C15	0.1326 (3)	0.0718 (2)	0.2182 (2)	0.0503 (7)
C16	0.1385 (3)	0.0126 (3)	0.1193 (2)	0.0597 (9)
C17	0.1461 (3)	0.0905 (3)	0.0183 (2)	0.0656 (10)
C18	0.1470 (3)	0.2263 (3)	0.0163 (2)	0.0603 (9)
C19	0.1369 (2)	0.2902 (3)	0.11569 (19)	0.0477 (7)
C20	0.1334 (3)	0.4405 (3)	0.1102 (3)	0.0668 (10)
H3	0.17942	0.58560	0.73612	0.0518*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H4	0.15890	0.78179	0.82819	0.0596*
Н5	0.33508	0.78146	0.91482	0.0594*
H6	0.53017	0.58723	0.90992	0.0555*
H8A	0.66157	0.36151	0.86691	0.0792*
H8B	0.66647	0.32205	0.74390	0.0792*
H8C	0.57295	0.26342	0.85508	0.0792*
H9A	0.05583	0.17731	0.70272	0.0771*
H9B	-0.02124	0.21985	0.60307	0.0771*
Н9С	-0.03061	0.33286	0.68556	0.0771*
H10A	0.30365	0.44761	0.36649	0.0847*
H10B	0.38001	0.44916	0.46205	0.0847*
H10C	0.21741	0.53757	0.47635	0.0847*
H11A	0.73019	0.17370	0.41799	0.0764*
H11B	0.83035	0.03018	0.44956	0.0764*
H11C	0.78978	0.15895	0.52634	0.0764*
H12A	0.54898	-0.00324	0.80065	0.0858*
H12B	0.49124	-0.10588	0.75313	0.0858*
H12C	0.39110	0.04533	0.78523	0.0858*
H15	0.12990	0.01860	0.28650	0.0604*
H16	0.13734	-0.07909	0.12108	0.0716*
H17	0.15067	0.05150	-0.04918	0.0787*
H18	0.15457	0.27700	-0.05339	0.0724*
H20A	0.19466	0.45179	0.15394	0.1002*
H20B	0.03524	0.49670	0.14206	0.1002*
H20C	0.16794	0.46896	0.03100	0.1002*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0307 (1)	0.0301 (1)	0.0392 (1)	-0.0034 (1)	-0.0120(1)	-0.0034 (1)
Sn2	0.0304 (1)	0.0345 (1)	0.0344 (1)	-0.0063 (1)	-0.0115 (1)	-0.0060(1)
01	0.0397 (8)	0.0516 (9)	0.0440 (8)	-0.0135 (7)	-0.0113 (6)	-0.0126 (7)
02	0.0406 (8)	0.0430 (8)	0.0617 (10)	-0.0078 (6)	-0.0088 (7)	-0.0237 (7)
03	0.0355 (7)	0.0316 (6)	0.0467 (8)	-0.0004 (5)	-0.0203 (6)	-0.0099 (6)
O4	0.0507 (9)	0.0438 (8)	0.0483 (9)	0.0001 (7)	-0.0264 (7)	-0.0083 (6)
05	0.0612 (11)	0.0534 (10)	0.0574 (10)	0.0092 (8)	-0.0259 (8)	-0.0158 (8)
C1	0.0383 (10)	0.0380 (10)	0.0323 (10)	-0.0095 (8)	-0.0095 (8)	-0.0038 (8)
C2	0.0351 (10)	0.0324 (9)	0.0333 (10)	-0.0083 (8)	-0.0074 (7)	-0.0047 (7)
C3	0.0392 (11)	0.0399 (11)	0.0470 (12)	-0.0030 (9)	-0.0133 (9)	-0.0076 (9)
C4	0.0497 (13)	0.0345 (10)	0.0544 (14)	0.0006 (9)	-0.0096 (10)	-0.0084 (9)
C5	0.0609 (14)	0.0365 (11)	0.0484 (13)	-0.0140 (10)	-0.0070 (10)	-0.0126 (9)
C6	0.0482 (12)	0.0490 (12)	0.0455 (12)	-0.0154 (10)	-0.0138 (9)	-0.0109 (9)
C7	0.0379 (10)	0.0366 (10)	0.0361 (10)	-0.0080 (8)	-0.0080 (8)	-0.0061 (8)
C8	0.0499 (13)	0.0507 (13)	0.0588 (14)	-0.0017 (10)	-0.0263 (11)	-0.0115 (11)
C9	0.0386 (12)	0.0555 (13)	0.0587 (14)	-0.0151 (10)	-0.0073 (10)	-0.0082 (11)
C10	0.0666 (16)	0.0438 (12)	0.0581 (15)	-0.0186 (11)	-0.0158 (12)	0.0060 (10)
C11	0.0465 (13)	0.0465 (12)	0.0556 (14)	-0.0168 (10)	-0.0036 (10)	-0.0028 (10)
C12	0.0550 (14)	0.0631 (15)	0.0442 (13)	-0.0122 (12)	-0.0058 (10)	0.0005 (11)

C13	0.0404 (11)	0.0436 (11)	0.0436 (12)	-0.0074 (9)	-0.0160(9)	-0.0051 (9)
C14	0.0344 (10)	0.0462 (11)	0.0417 (11)	-0.0025 (9)	-0.0147 (8)	-0.0072 (9)
C15	0.0517 (13)	0.0475 (12)	0.0502 (13)	-0.0039 (10)	-0.0215 (10)	-0.0051 (10)
C16	0.0617 (16)	0.0532 (14)	0.0621 (16)	-0.0041 (12)	-0.0204 (12)	-0.0199 (12)
C17	0.0602 (16)	0.0784 (19)	0.0527 (15)	-0.0040 (14)	-0.0143 (12)	-0.0287 (14)
C18	0.0558 (15)	0.0817 (19)	0.0375 (12)	-0.0121 (13)	-0.0120 (10)	-0.0026 (12)
C19	0.0395 (11)	0.0577 (13)	0.0439 (12)	-0.0092 (10)	-0.0132 (9)	-0.0031 (10)
C20	0.0742 (18)	0.0673 (17)	0.0639 (17)	-0.0287 (14)	-0.0237 (14)	0.0143 (13)
Geometric p	arameters (Å, °)					
Sn1—O1		2.2561 (15)	C18-	C19	1.39	4 (3)
Sn1—O3		2.0241 (14)	C19–	C20	1.50	6 (4)
Sn1—O4		2.1671 (16)	С3—	H3	0.93	00
Sn1—C9		2.098 (2)	C4—	H4	0.93	00
Sn1—C10		2.090 (2)	С5—	H5	0.93	00
Sn2—O2		2.2463 (15)	С6—	H6	0.93	00
Sn2—O3		2.0387 (15)	C8—	H8A	0.96	00
Sn2—C11		2.104 (3)	C8—	H8B	0.96	00
Sn2—C12		2.094 (2)	C8—	H8C	0.96	00
Sn2—Sn2 ⁱ		3.2993 (2)	С9—	H9A	0.96	00
Sn2—O3 ⁱ		2.1412 (13)	С9—	H9B	0.96	00
01—C1		1.261 (3)	С9—	Н9С	0.96	00
O2—C1		1.259 (3)	C10-	-H10A	0.96	00
O4—C13		1.293 (3)	C10-	-H10B	0.96	00
O5-C13		1.223 (3)	C10-	-H10C	0.96	00
C1—C2		1.487 (3)	C11-	-H11A	0.96	00
С2—С3		1.392 (3)	C11–	-H11B	0.96	00
С2—С7		1.402 (3)	C11–	-H11C	0.96	00
C3—C4		1.384 (3)	C12-	-H12A	0.96	00
C4—C5		1.373 (4)	C12-	-H12B	0.96	00
C5—C6		1.381 (3)	C12-	-H12C	0.96	00
C6—C7		1.386 (3)	C15-	-H15	0.93	00
C7—C8		1.505 (3)	C16–	–H16	0.93	00
CI3—CI4		1.507 (3)	C17-	-H17	0.93	00
CI4—CI5		1.392 (3)	C18-	-H18	0.93	00
C14-C19		1.394 (3)	C20-	-H20A	0.96	00
C15-C10		1.377(3)	C20-	-H20B	0.96	00
C10-C17		1.376(4)	C20-	-11200	0.90	00
Sn1…O5 ⁱⁱ		3.6541 (17)	C1…I	H8C	2.97	00
Sn2…C13 ⁱ		4.045 (2)	C1…I	H10B	2.93	00
Sn1…H11B ⁱ		3.3500	C1…I	H8B	3.01	00
Sn2…H15 ⁱ		3.6200	C3…I	H20B ⁱⁱ	3.09	00
O1…Sn2		3.4765 (15)	C4…I	H11A ^{iv}	3.03	00
01…03		2.9929 (19)	C5…1	H8A ⁱⁱⁱ	3.07	00
01···C9		2.937 (3)	C51	$H12B^{v}$	2 83	00
		=	0,5.1	1141	2:05	

O1…C10	3.080 (3)	C6···H8A ⁱⁱⁱ	3.0500
O2…C8	2.842 (3)	C6···H6 ⁱⁱⁱ	2.9800
O2…Sn1	3.4633 (17)	C7···H10A ^{iv}	2.9100
02…03	2.990 (2)	C8···H10A ^{iv}	3.0600
O2…C11	2.888 (3)	C9····H11B ⁱ	2.9400
O2…C12	3.077 (3)	C10···H8B ^{iv}	3.1000
O3···O3 ⁱ	2.5685 (19)	C13…H10A	3.0900
O3…C10	3.314 (2)	С13…Н20А	2.7400
O3…C12	3.294 (3)	C14···H4 ⁱⁱ	3.0900
O3…O4	2.676 (2)	C14···H3 ⁱⁱ	3.0900
O3…O1	2.9929 (19)	C15···H4 ⁱⁱ	3.0300
O3…O2	2.990 (2)	C15···H12A ⁱ	3.0000
O3…C12 ⁱ	3.287 (3)	C16…H4 ⁱⁱ	3.0000
O3…C1	3.374 (2)	C17…H4 ⁱⁱ	3.0400
O3···C11 ⁱ	3.147 (3)	C19…H3 ⁱⁱ	3.0900
O4···Sn2 ⁱ	2.8567 (16)	Н3…О1	2.5100
O4…O3	2.676 (2)	H3···O5 ⁱⁱ	2.7100
O4…C10	3.245 (3)	H3…C14 ⁱⁱ	3.0900
O4…C11 ⁱ	3.243 (2)	H3···C19 ⁱⁱ	3.0900
O4…C9	3.134 (3)	H3···H20B ⁱⁱ	2.5400
O4…C12 ⁱ	3.113 (3)	H4…C14 ⁱⁱ	3.0900
O5…C10	3.278 (4)	H4…C15 ⁱⁱ	3.0300
O5…Sn1 ⁱⁱ	3.6541 (17)	H4…C16 ⁱⁱ	3.0000
O5…C20	2.965 (4)	H4…C17 ⁱⁱ	3.0400
O1…H3	2.5100	H5…H12B ^v	2.5200
O2…H8B	2.4600	H6…H8A	2.2900
O2…H8C	2.8000	H6…C6 ⁱⁱⁱ	2.9800
O2…H11C	2.7600	H6…H20A ^{iv}	2.5500
O4…H12B ⁱ	2.9100	Н8А…Н6	2.2900
O4…H9B	2.8900	H8A…C5 ⁱⁱⁱ	3.0700
O4…H11B ⁱ	2.8300	H8A···C6 ⁱⁱⁱ	3.0500
O4…H15	2.6400	H8B…O2	2.4600
O5…H20A	2.7000	H8B…C1	3.0100
O5…H20B	2.7900	H8B···C10 ^{iv}	3.1000
О5…H3 ⁱⁱ	2.7100	H8C…O2	2.8000
O5…H9C ⁱⁱ	2.8600	H8C…C1	2.9700
O5…H10C ⁱⁱ	2.6800	H9B···H11C ^{vi}	2.6000
C3…C19 ⁱⁱ	3.581 (3)	H9C···O5 ⁱⁱ	2.8600
C6···C6 ⁱⁱⁱ	3.499 (3)	H10A…C13	3.0900
C7…C10 ^{iv}	3.569 (3)	H10A····C7 ^{iv}	2.9100
C8…O2	2.842 (3)	H10A····C8 ^{iv}	3.0600

C9…O4	3.134 (3)	H10B…C1	2.9300
C9…O1	2.937 (3)	H10C····O5 ⁱⁱ	2.6800
C10····C7 ^{iv}	3.569 (3)	H11A····C4 ^{iv}	3.0300
C10…C1	3.379 (3)	H11B…Sn1 ⁱ	3.3500
C10…O4	3.245 (3)	H11B…O4 ⁱ	2.8300
C10C13	3.518 (3)	H11B···C9 ⁱ	2.9400
C10O5	3.278 (4)	H11C···H9B ^{vii}	2.6000
C10····O3	3 314 (2)	$H12A\cdotsC15^{i}$	3 0000
C10O1	3,080 (3)	H12R. C5 ^{viii}	2 8300
C11O2	2 888 (3)		2.5200
	2.000(3)		2.5200
	3.242 (2)	H12B····O4	2.9100
Cl1···Sn1	3.970 (2)	H15····O4	2.6400
C11···O3 ¹	3.147 (3)	H15····Sn2 ¹	3.6200
C12…O3 ¹	3.287 (3)	H18…H20C	2.3500
C12···C1	3.517 (3)	H20A…O5	2.7000
C12…O4 ¹	3.113 (3)	H20A…C13	2.7400
C12···O3	3.294 (3)	H20A…H6 ^{iv}	2.5500
C12…O2	3.077 (3)	H20B···O5	2.7900
C13···Sn2 ⁱ	4.044 (2)	H20B···C3 ⁱⁱ	3.0900
C19····C3 ⁱⁱ	3.581 (3)	H20B····H3 ⁱⁱ	2.5400
C20…O5	2.965 (4)	H20C…H18	2.3500
O1—Sn1—O3	88.56 (6)	C14—C19—C20	122.4 (2)
O1—Sn1—O4	166.35 (5)	C18—C19—C20	120.1 (2)
01 0 1 00	84.75 (8)	С2—С3—Н3	120.00
O1-Sn1-C9	0 11/0 (0)		
01—Sn1—C9 01—Sn1—C10	90.16 (8)	С4—С3—Н3	120.00
O1—Sn1—C9 O1—Sn1—C10 O3—Sn1—O4	90.16 (8) 79.26 (6)	C4—C3—H3 C3—C4—H4	120.00 120.00
O1—Sn1—C9 O1—Sn1—C10 O3—Sn1—O4 O3—Sn1—C9	90.16 (8) 79.26 (6) 114.11 (9)	C4—C3—H3 C3—C4—H4 C5—C4—H4	120.00 120.00 120.00
O1—Sn1—C9 O1—Sn1—C10 O3—Sn1—O4 O3—Sn1—C9 O3—Sn1—C10	90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5	120.00 120.00 120.00 120.00
O1—Sn1—C9 O1—Sn1—C10 O3—Sn1—O4 O3—Sn1—C9 O3—Sn1—C10 O4—Sn1—C9	90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8) 94.55 (8)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5 C6—C5—H5	120.00 120.00 120.00 120.00 120.00
O1—Sn1—C9 O1—Sn1—C10 O3—Sn1—O4 O3—Sn1—C9 O3—Sn1—C10 O4—Sn1—C9 O4—Sn1—C10	90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8) 94.55 (8) 99.29 (8)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5 C6—C5—H5 C5—C6—H6	120.00 120.00 120.00 120.00 120.00 119.00
O1—Sn1—C9 O1—Sn1—C10 O3—Sn1—O4 O3—Sn1—C9 O3—Sn1—C10 O4—Sn1—C9 O4—Sn1—C10 C9—Sn1—C10	90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8) 94.55 (8) 99.29 (8) 138.08 (11)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5 C6—C5—H5 C5—C6—H6 C7—C6—H6	120.00 120.00 120.00 120.00 120.00 119.00 119.00
O1—Sn1—C9 O1—Sn1—C10 O3—Sn1—O4 O3—Sn1—C9 O3—Sn1—C10 O4—Sn1—C9 O4—Sn1—C10 C9—Sn1—C10 O2—Sn2—O3	90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8) 94.55 (8) 99.29 (8) 138.08 (11) 88.35 (6)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5 C6—C5—H5 C5—C6—H6 C7—C6—H6 C7—C8—H8A	120.00 120.00 120.00 120.00 120.00 119.00 109.00
O1—Sn1—C9 O1—Sn1—C10 O3—Sn1—O4 O3—Sn1—C9 O3—Sn1—C10 O4—Sn1—C10 O4—Sn1—C10 C9—Sn1—C10 O2—Sn2—O3 O2—Sn2—C11	90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8) 94.55 (8) 99.29 (8) 138.08 (11) 88.35 (6) 83.12 (7)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5 C6—C5—H5 C5—C6—H6 C7—C6—H6 C7—C8—H8A C7—C8—H8B	120.00 120.00 120.00 120.00 119.00 119.00 109.00
O1—Sn1—C9 O1—Sn1—C10 O3—Sn1—O4 O3—Sn1—C9 O3—Sn1—C9 O4—Sn1—C10 O4—Sn1—C10 C9—Sn1—C10 O2—Sn2—O3 O2—Sn2—C11 O2—Sn2—C12	90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8) 94.55 (8) 99.29 (8) 138.08 (11) 88.35 (6) 83.12 (7) 90.24 (9)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5 C6—C5—H5 C5—C6—H6 C7—C6—H6 C7—C8—H8A C7—C8—H8B C7—C8—H8C	120.00 120.00 120.00 120.00 120.00 119.00 119.00 109.00 109.00
$\begin{array}{c} 01 - sn1 - C9 \\ 01 - sn1 - C10 \\ 03 - sn1 - O4 \\ 03 - sn1 - C9 \\ 03 - sn1 - C10 \\ 04 - sn1 - C9 \\ 04 - sn1 - C10 \\ 02 - sn2 - O3 \\ 02 - sn2 - C11 \\ 02 - sn2 - C12 \\ sn2^{i} - sn2 - O2 \end{array}$	90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8) 94.55 (8) 99.29 (8) 138.08 (11) 88.35 (6) 83.12 (7) 90.24 (9) 126.86 (4)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5 C6—C5—H5 C5—C6—H6 C7—C6—H6 C7—C8—H8A C7—C8—H8B C7—C8—H8B	120.00 120.00 120.00 120.00 120.00 119.00 109.00 109.00 109.00 109.00
$\begin{array}{c} 01-sn1-c9\\ 01-sn1-c10\\ 03-sn1-04\\ 03-sn1-c9\\ 03-sn1-c9\\ 04-sn1-c9\\ 04-sn1-c10\\ 02-sn2-03\\ 02-sn2-c11\\ 02-sn2-c12\\ sn2^{i}-sn2-02\\ 02-sn2-03^{i} \end{array}$	90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8) 94.55 (8) 99.29 (8) 138.08 (11) 88.35 (6) 83.12 (7) 90.24 (9) 126.86 (4) 162.12 (6)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5 C6—C5—H5 C5—C6—H6 C7—C6—H6 C7—C8—H8A C7—C8—H8B C7—C8—H8B H8A—C8—H8B	120.00 120.00 120.00 120.00 120.00 119.00 119.00 109.00 109.00 109.00 109.00
$\begin{array}{c} 01-sn1-c9\\ 01-sn1-c10\\ 03-sn1-04\\ 03-sn1-c9\\ 03-sn1-c9\\ 04-sn1-c10\\ 04-sn1-c10\\ 02-sn2-03\\ 02-sn2-c11\\ 02-sn2-c12\\ sn2^{i}-sn2-02\\ 02-sn2-03^{i}\\ 03-sn2-c11\\ \end{array}$	90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8) 94.55 (8) 99.29 (8) 138.08 (11) 88.35 (6) 83.12 (7) 90.24 (9) 126.86 (4) 162.12 (6) 113.89 (8)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5 C6—C5—H5 C5—C6—H6 C7—C6—H6 C7—C8—H8A C7—C8—H8B C7—C8—H8B H8A—C8—H8B H8A—C8—H8C H8B—C8—H8C	120.00 120.00 120.00 120.00 120.00 119.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00
$\begin{array}{c} 01 - sn1 - C9 \\ 01 - sn1 - C10 \\ 03 - sn1 - O4 \\ 03 - sn1 - C9 \\ 03 - sn1 - C10 \\ 04 - sn1 - C10 \\ 04 - sn1 - C10 \\ 02 - sn2 - C10 \\ 02 - sn2 - C11 \\ 02 - sn2 - C11 \\ 02 - sn2 - C12 \\ sn2^{i} - sn2 - O2 \\ 02 - sn2 - C11 \\ 03 - sn2 - C11 \\ 03 - sn2 - C12 \end{array}$	90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8) 94.55 (8) 99.29 (8) 138.08 (11) 88.35 (6) 83.12 (7) 90.24 (9) 126.86 (4) 162.12 (6) 113.89 (8) 105.70 (10)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5 C6—C5—H5 C5—C6—H6 C7—C6—H6 C7—C8—H8A C7—C8—H8B C7—C8—H8B H8A—C8—H8C H8B—C8—H8C H8B—C8—H8C Sn1—C9—H9A	120.00 120.00 120.00 120.00 120.00 119.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00
$\begin{array}{c} 01 - 8n1 - C9 \\ 01 - 8n1 - C10 \\ 03 - 8n1 - 04 \\ 03 - 8n1 - C9 \\ 03 - 8n1 - C10 \\ 04 - 8n1 - C10 \\ 04 - 8n1 - C10 \\ 02 - 8n2 - 03 \\ 02 - 8n2 - C11 \\ 02 - 8n2 - C12 \\ 8n2^{i} - 8n2 - O2 \\ 02 - 8n2 - C11 \\ 03 - 8n2 - C11 \\ 03 - 8n2 - C12 \\ 8n2^{i} - 8n2 - C3 \end{array}$	90.16 (8) 90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8) 94.55 (8) 99.29 (8) 138.08 (11) 88.35 (6) 83.12 (7) 90.24 (9) 126.86 (4) 162.12 (6) 113.89 (8) 105.70 (10) 38.99 (4)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5 C6—C5—H5 C5—C6—H6 C7—C6—H6 C7—C8—H8A C7—C8—H8B C7—C8—H8C H8A—C8—H8C H8B—C8—H8C H8B—C8—H8C Sn1—C9—H9B	120.00 120.00 120.00 120.00 120.00 119.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00
$\begin{array}{c} 01 - 8n1 - C9 \\ 01 - 8n1 - C10 \\ 03 - 8n1 - 04 \\ 03 - 8n1 - C9 \\ 03 - 8n1 - C9 \\ 04 - 8n1 - C10 \\ 04 - 8n1 - C10 \\ 02 - 8n2 - 03 \\ 02 - 8n2 - C11 \\ 02 - 8n2 - C12 \\ 8n2^{i} - 8n2 - O2 \\ 02 - 8n2 - C11 \\ 03 - 8n2 - C11 \\ 03 - 8n2 - C12 \\ 8n2^{i} - 8n2 - O3 \\ 03 - 8n2 - O3^{i} \\ 03 - 8n2 - O3^{i} \end{array}$	90.16 (8) 90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8) 94.55 (8) 99.29 (8) 138.08 (11) 88.35 (6) 83.12 (7) 90.24 (9) 126.86 (4) 162.12 (6) 113.89 (8) 105.70 (10) 38.99 (4) 75.78 (5)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5 C6—C5—H5 C5—C6—H6 C7—C6—H6 C7—C8—H8A C7—C8—H8B C7—C8—H8B H8A—C8—H8C H8B—C8—H8C H8B—C8—H8C Sn1—C9—H9A Sn1—C9—H9B	120.00 120.00 120.00 120.00 120.00 119.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00
$\begin{array}{c} 01-sn1-c9\\ 01-sn1-c10\\ 03-sn1-04\\ 03-sn1-c9\\ 03-sn1-c9\\ 03-sn1-c10\\ 04-sn1-c9\\ 04-sn1-c10\\ 02-sn2-03\\ 02-sn2-c11\\ 02-sn2-c12\\ sn2^{i}-sn2-02\\ 02-sn2-c12\\ sn2^{i}-sn2-02\\ 03-sn2-c12\\ sn2^{i}-sn2-03\\ 03-sn2-c12\\ sn2^{i}-sn2-03\\ 03-sn2-03^{i}\\ c11-sn2-c12\\ \end{array}$	90.16 (8) 90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8) 94.55 (8) 99.29 (8) 138.08 (11) 88.35 (6) 83.12 (7) 90.24 (9) 126.86 (4) 162.12 (6) 113.89 (8) 105.70 (10) 38.99 (4) 75.78 (5) 139.56 (11)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5 C6—C5—H5 C5—C6—H6 C7—C6—H6 C7—C8—H8A C7—C8—H8B C7—C8—H8C H8A—C8—H8C H8B—C8—H8C H8B—C8—H8C Sn1—C9—H9A Sn1—C9—H9B Sn1—C9—H9B	120.00 120.00 120.00 120.00 120.00 119.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00
$\begin{array}{c} 01 - 8n1 - C9 \\ 01 - 8n1 - C10 \\ 03 - 8n1 - 04 \\ 03 - 8n1 - C9 \\ 03 - 8n1 - C9 \\ 03 - 8n1 - C10 \\ 04 - 8n1 - C10 \\ 04 - 8n1 - C10 \\ 02 - 8n2 - C10 \\ 02 - 8n2 - C11 \\ 02 - 8n2 - C12 \\ 8n2^{i} - 8n2 - C2 \\ 02 - 8n2 - C12 \\ 03 - 8n2 - C11 \\ 03 - 8n2 - C12 \\ 8n2^{i} - 8n2 - O3 \\ 03 - 8n2 - C12 \\ 8n2^{i} - 8n2 - O3 \\ 03 - 8n2 - C12 \\ 8n2^{i} - 8n2 - O3 \\ 03 - 8n2 - C12 \\ 8n2^{i} - 8n2 - C11 \\ \end{array}$	90.16 (8) 90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8) 94.55 (8) 99.29 (8) 138.08 (11) 88.35 (6) 83.12 (7) 90.24 (9) 126.86 (4) 162.12 (6) 113.89 (8) 105.70 (10) 38.99 (4) 75.78 (5) 139.56 (11) 108.32 (7)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5 C6—C5—H5 C5—C6—H6 C7—C6—H6 C7—C8—H8A C7—C8—H8B H8A—C8—H8C H8B—C8—H8C H8B—C8—H8C Sn1—C9—H9A Sn1—C9—H9B Sn1—C9—H9B H9A—C9—H9C	120.00 120.00 120.00 120.00 120.00 120.00 119.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00
$\begin{array}{c} 01 - 8n1 - C9 \\ 01 - 8n1 - C10 \\ 03 - 8n1 - 04 \\ 03 - 8n1 - C9 \\ 03 - 8n1 - C9 \\ 03 - 8n1 - C10 \\ 04 - 8n1 - C10 \\ 04 - 8n1 - C10 \\ 02 - 8n2 - C10 \\ 02 - 8n2 - C12 \\ 02 - 8n2 - C12 \\ 8n2^{i} - 8n2 - O2 \\ 02 - 8n2 - C12 \\ 03 - 8n2 - C12 \\ 03 - 8n2 - C12 \\ 8n2^{i} - 8n2 - O3 \\ 03 - 8n2 - C12 \\ 8n2^{i} - 8n2 - O3 \\ 03 - 8n2 - C12 \\ 8n2^{i} - 8n2 - O3 \\ 03 - 8n2 - C12 \\ 8n2^{i} - 8n2 - C12 \\ 8n2^{i} - 8n2 - C11 \\ 03^{i} - 8n2 - C11 \\ 03^{i} - 8n2 - C11 \\ 03^{i} - 8n2 - C11 \end{array}$	90.16 (8) 90.16 (8) 79.26 (6) 114.11 (9) 107.30 (8) 94.55 (8) 99.29 (8) 138.08 (11) 88.35 (6) 83.12 (7) 90.24 (9) 126.86 (4) 162.12 (6) 113.89 (8) 105.70 (10) 38.99 (4) 75.78 (5) 139.56 (11) 108.32 (7) 95.66 (7)	C4—C3—H3 C3—C4—H4 C5—C4—H4 C4—C5—H5 C6—C5—H5 C5—C6—H6 C7—C6—H6 C7—C8—H8A C7—C8—H8B C7—C8—H8C H8A—C8—H8C H8B—C8—H8C H8B—C8—H8C Sn1—C9—H9A Sn1—C9—H9B Sn1—C9—H9B H9A—C9—H9C H9B—C9—H9C	120.00 120.00 120.00 120.00 120.00 119.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00

O3 ⁱ —Sn2—C12	101.83 (9)	Sn1—C10—H10B	109.00
Sn2 ⁱ —Sn2—O3 ⁱ	36.80 (4)	Sn1—C10—H10C	109.00
Sn1—O1—C1	123.85 (13)	H10A—C10—H10B	109.00
Sn2—O2—C1	129.00 (14)	H10A—C10—H10C	109.00
Sn1—O3—Sn2	132.78 (7)	H10B-C10-H10C	109.00
Sn1—O3—Sn2 ⁱ	122.76 (7)	Sn2—C11—H11A	109.00
Sn2—O3—Sn2 ⁱ	104.22 (6)	Sn2—C11—H11B	110.00
Sn1—O4—C13	115.13 (12)	Sn2—C11—H11C	110.00
O1—C1—O2	123.10 (19)	H11A—C11—H11B	109.00
O1—C1—C2	118.30 (18)	H11A—C11—H11C	109.00
O2—C1—C2	118.57 (19)	H11B—C11—H11C	110.00
C1—C2—C3	116.73 (19)	Sn2—C12—H12A	109.00
C1—C2—C7	122.57 (18)	Sn2—C12—H12B	109.00
C3—C2—C7	120.64 (18)	Sn2—C12—H12C	109.00
C2—C3—C4	120.3 (2)	H12A—C12—H12B	109.00
C3—C4—C5	119.7 (2)	H12A—C12—H12C	110.00
C4—C5—C6	120.0 (2)	H12B-C12-H12C	109.00
C5—C6—C7	122.2 (3)	C14—C15—H15	119.00
C2—C7—C6	117.3 (2)	C16—C15—H15	119.00
C2—C7—C8	123.55 (19)	C15—C16—H16	120.00
C6—C7—C8	119.2 (2)	C17—C16—H16	120.00
O4—C13—O5	123.1 (2)	С16—С17—Н17	120.00
O4—C13—C14	114.83 (17)	C18—C17—H17	120.00
O5-C13-C14	122.09 (19)	C17—C18—H18	119.00
C13—C14—C15	118.28 (18)	C19—C18—H18	119.00
C13—C14—C19	121.75 (19)	C19—C20—H20A	110.00
C15—C14—C19	120.0 (2)	C19—C20—H20B	109.00
C14—C15—C16	121.2 (2)	С19—С20—Н20С	109.00
C15—C16—C17	119.2 (3)	H20A—C20—H20B	109.00
C16—C17—C18	120.2 (2)	H20A—C20—H20C	109.00
C17—C18—C19	121.9 (2)	H20B-C20-H20C	109.00
C14—C19—C18	117.5 (2)		
O3—Sn1—O1—C1	57.73 (15)	C12—Sn2—Sn2 ⁱ —C12 ⁱ	-180.00 (12)
C9—Sn1—O1—C1	172.10 (17)	$O3^{i}$ —Sn2—Sn2 ⁱ —O3	-179.98 (13)
C10—Sn1—O1—C1	-49.57 (17)	$O3$ — $Sn2$ — $O3^i$ — $Sn1^i$	174.92 (9)
O1—Sn1—O3—Sn2	-16.38 (10)	$O3$ — $Sn2$ — $O3^i$ — $Sn2^i$	-0.03 (14)
O1—Sn1—O3—Sn2 ⁱ	156.91 (8)	C11—Sn2—O3 ⁱ —Sn1 ⁱ	61.67 (10)
O4—Sn1—O3—Sn2	169.83 (11)	C11—Sn2—O3 ⁱ —Sn2 ⁱ	-113.25 (8)
$O4$ — $Sn1$ — $O3$ — $Sn2^{i}$	-16.88 (8)	C12—Sn2—O3 ⁱ —Sn1 ⁱ	-81.66 (12)
C9—Sn1—O3—Sn2	-99.97 (11)	C12—Sn2—O3 ⁱ —Sn2 ⁱ	103.42 (10)
C9—Sn1—O3—Sn2 ⁱ	73.32 (10)	Sn1—O1—C1—O2	-42.7 (3)
C10—Sn1—O3—Sn2	73.34 (12)	Sn1—O1—C1—C2	135.22 (15)
C10—Sn1—O3—Sn2 ⁱ	-113.38 (10)	Sn2—O2—C1—O1	-23.7 (3)
O3—Sn1—O4—C13	-163.73 (16)	Sn2—O2—C1—C2	158.41 (13)
C9—Sn1—O4—C13	82.56 (17)	Sn1—O4—C13—O5	-9.5 (3)
C10—Sn1—O4—C13	-57.73 (17)	Sn1—O4—C13—C14	170.80 (14)

O3—Sn2—O2—C1	49.17 (18)	O1—C1—C2—C3	-32.3 (3)
C11—Sn2—O2—C1	163.47 (19)	O1—C1—C2—C7	150.43 (19)
C12—Sn2—O2—C1	-56.53 (19)	O2—C1—C2—C3	145.7 (2)
Sn2 ⁱ —Sn2—O2—C1	55.71 (19)	O2—C1—C2—C7	-31.6 (3)
O2—Sn2—O3—Sn1	-14.15 (10)	C1—C2—C3—C4	-176.5 (2)
$O2$ — $Sn2$ — $O3$ — $Sn2^i$	171.68 (7)	C7—C2—C3—C4	0.8 (3)
C11—Sn2—O3—Sn1	-95.88 (11)	C1—C2—C7—C6	176.54 (19)
C11—Sn2—O3—Sn2 ⁱ	89.95 (8)	C1—C2—C7—C8	-4.7 (3)
C12—Sn2—O3—Sn1	75.64 (12)	C3—C2—C7—C6	-0.6 (3)
C12—Sn2—O3—Sn2 ⁱ	-98.54 (9)	C3—C2—C7—C8	178.2 (2)
Sn2 ⁱ —Sn2—O3—Sn1	174.18 (14)	C2—C3—C4—C5	-0.4 (3)
O3 ⁱ —Sn2—O3—Sn1	174.18 (11)	C3—C4—C5—C6	-0.1 (4)
$O3^{i}$ —Sn2—O3—Sn2 ⁱ	0.03 (13)	C4—C5—C6—C7	0.3 (4)
$O2$ — $Sn2$ — $Sn2^{i}$ — $O3$	-10.42 (8)	C5—C6—C7—C2	0.1 (3)
$O2$ — $Sn2$ — $Sn2^{i}$ — $O2^{i}$	180.00 (8)	C5—C6—C7—C8	-178.8 (2)
O2— $Sn2$ — $Sn2$ ⁱ — $O3$ ⁱ	169.58 (8)	O4—C13—C14—C15	45.0 (3)
$O2$ — $Sn2$ — $Sn2^{i}$ — $C11^{i}$	-84.82 (8)	O4—C13—C14—C19	-135.0 (2)
$O2$ — $Sn2$ — $Sn2^{i}$ — $C12^{i}$	76.02 (10)	O5-C13-C14-C15	-134.7 (3)
$O3$ — $Sn2$ — $Sn2^{i}$ — $O2^{i}$	-169.58 (8)	O5-C13-C14-C19	45.3 (3)
$O3$ — $Sn2$ — $Sn2^{i}$ — $O3^{i}$	179.98 (13)	C13—C14—C15—C16	179.0 (3)
$O3$ — $Sn2$ — $Sn2^{i}$ — $C11^{i}$	-74.40 (9)	C19—C14—C15—C16	-1.0 (4)
$O3$ — $Sn2$ — $Sn2^{i}$ — $C12^{i}$	86.45 (11)	C13—C14—C19—C18	179.2 (2)
C11—Sn2—Sn2 ⁱ —O3	-105.61 (9)	C13—C14—C19—C20	-0.7 (4)
C11—Sn2—Sn2 ⁱ —O2 ⁱ	84.81 (8)	C15—C14—C19—C18	-0.8 (4)
C11—Sn2—Sn2 ⁱ —O3 ⁱ	74.39 (9)	C15—C14—C19—C20	179.3 (3)
C11—Sn2—Sn2 ⁱ —C11 ⁱ	180.00 (9)	C14—C15—C16—C17	1.6 (5)
$C11$ — $Sn2$ — $Sn2^{i}$ — $C12^{i}$	-19.16 (11)	C15—C16—C17—C18	-0.4 (5)
$C12$ — $Sn2$ — $Sn2^{i}$ — $O3$	93.56 (11)	C16—C17—C18—C19	-1.5 (5)
$C12$ — $Sn2$ — $Sn2^{i}$ — $O2^{i}$	-76.02 (10)	C17—C18—C19—C14	2.1 (4)
C12—Sn2—Sn2 ⁱ —O3 ⁱ	-86.45 (11)	C17—C18—C19—C20	-178.0 (3)
$C12$ — $Sn2$ — $Sn2^{i}$ — $C11^{i}$	19.16 (11)		

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+2; (iv) -*x*+1, -*y*+1, -*z*+1; (v) *x*, *y*+1, *z*; (vi) *x*-1, *y*, *z*; (vii) *x*+1, *y*, *z*; (viii) *x*, *y*-1, *z*.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C14–C19 phenyl ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C10—H10C…O5 ⁱⁱ	0.96	2.678	3.452 (3)	138
C4—H4…Cg ⁱⁱ	0.93	2.74	3.493 (3)	139
Symmetry codes: (ii) $-x$, $-y+1$, $-z+1$.				

Fig. 1

